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PREFACE

This program was conducted by the Department of Mechanical and Industrial
Engineering, University of Il1linois at Urbana-Champaign, [11inois 61801, under
Contract F08635-82-K-0321 with the Air Force Armament Laboratory, Eglin Air
Force Base, Florida 32542-5000. Mr. Mark Amend, DLYV, managed the program for
the Armament Laboratory. The program was conducted during the period from
September 1982 through March 1985.

, This report is a companion document to AFATL-TR-85-12, entitled A Fully

} Viscous Two-Dimensional Unsteady Flow Analysis Applied to Detonation
Transition in Porous Explosives, which describes the treatment of the
unsteady, two-phase, separated flow conservation equations in one space
dimension. This report extends the treatment tc two space dimensions.
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SECTION I
INTRODUCTION

With recent developments in target hardening technology, damage to the
casings of impacting bombs prior to initiation of the explosive charge by the
fuse has been occurring with increasing frequency. The work done here was
motivated by the desire to be able to predict whether or not detonation will
occur in warheads whose casings have heen fractured. The existence of a hole
in the casing which confines the explosive can be expected tc have a
considerable effect on the formation of a detonation wave in the explosive.
The purpose of this work is to present a model which will determine the extent
of this effect.

An on-going effort has been present at the University of Il1linois at
Urbana-Champaign for the past several years, under the direction of Professor
Herman Krier, to develop a model which accurately describes the fluid
mechanics that result from flame spreading through a fragmented (and thus
porous) high-energy solid propellant or explosive media, The thrust of this
effort has been to: (a) formulate the equations of motion governing the fluid
dynamics of a combusting propellant bed and, (b) develop a stable numerical
scheme using these equations that will predict the transition from
deflagraticn to detonation (DDT) in a confined propellant bed. Previous
studies (including those of Van Tassel and Krier [1], Krier and Gokhale [2],
Krier, Rajan, and Van Tassel [3], Dimitsein [4], Krier, Dimitstein, and
Gokhale [5], Krier, Gokhale, and Hughes [6], Krier and Kezerle [7], and
Butier, Krier, and Lembeck [8]) have laid a strong foundation towards the

achievement of the goal. Models were derived to treat the unsteady, two-
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phase, separated flow conservation equations in one space dimension and these
were incorporated into a computer code which yielded stable solutions for a
wide range of input parameters. In its present form, the existing code is
capable of showing the rapid building up of a pressure shock front from an
initially quiescent, but locally ignited bed of packed, granulated particles
and predicting the formation of a steady-state detonation wave, provided that
the motion of the gas and particle phases is in one space dimension only.
(This has been shown experimentally to be the case for flame spreading through
a granulated propellant or explosive material which is completely enclosed in
a solid container (Reference $).) Table 1 is a 1ist which compares the
detonation conditions predicted by this one-dimensional 00T code for various
values of the initial particle density and porosity with the results predicted
by a steady-state thermo-chemical code (Reference 10); it illustrates the

high degree of accuracy using these methods.

TABLE 1. COMPARISON OF DATA FROM 1-D CODE AND TIGER CODE
(o° AND o, ARE INPUT PARAMETERS)

pglg/cc) 0o Peg(GPa) Tei(°K)  ppgl(g/cc) a
DT - Code 1.20 0.368 14.38 4201 1.64
TIGER 1.20 0.368 14.92 4337 1,65 ‘
0DT - Code 1.30 0.316 16.90 4289 1.76
TIGER 1.30 0.316 17.26 4304 1.78
00T - Code 1.33 0.300 18.11 4406 1.80
TIGER 1.33 0.300 18.00 4300 1.81
DOT - Code 1.40 0.263 19.64 4393 1.87
TiGER 1.40 0.263 19.60 4280 1.89




In its current state, the model can predict DOT in fractured high
explosives contained within undamaged bomb casings, but does rot contain the
necessary considerations for modeling the accelerated flame spreading in
realistic 2-D and 3-D bomb casing configurations, since one of the assumptions
in its formulation was that the flow was strictly one dimensional. The
addition of cracks or holes in the container walls (partial confinement) would
cause the flow to become muiti-dimensional. The work presented in this report

undertakes to develop a model of a combusting propellant bed which is not

always totally confired, that is, in which some of the gas generated by the
burning fragments is allowed to escape (along with, perhaps, some of the
entrained particles).

Two approaches to solving this problem are discussed: (a) modifying the
conse vation equations in the one-dimensional model to include loss terms
which simulate the mass, momentum, and energy escaping through the holes in
the casing, and (b) developing a new, unsteady, three-dimensional flow model
with a new numerical scheme, which incorporates the hole in the casing as a
boundary condition to the flow.

Approach (a), which is discussed in detail in Section II, utilizes
pseudo-sink terms in the conservation equations which simulate the effects of
mass 1oss on the formation of a pressure wave in the burning particle bed.

The approach was taken as a first approximation of the effect of partial
confinement since the working one-dimensional model was already available.
Clearly, since the mass would be ejected out of the domain in a direction
transverse to the direction of the flame spreadirg, the probiem becomes multi-
4 dimensional. However, even though the quasi two-dimensional formulation will

not yield exact results, it can provide meaningful physical insight into the
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behavior of partially confined accelerating reactive flows. This phase of the
work has been successfully completed and published in a proceedings (Reference
11). The results are both reasonable and consistent.

Approach (b) is mucn more ambitious in its scope. It requires the two-
phase, unsteady, separated flow consec~vation equations to be expressed in
three space dimensions and a new stabie numerical scheme to be developed which
can solve these very non-linear, coupled time-dependent equations. Once this
has been done, the condition of partial confinement can then be added in by
simply using the appropriate boundary condition. However, the difficulty of
developing a stable numerical scheme to integrate these coupled, hyperbolic
partial differential conservation equations alone provides a formidable
task. When coupled to the large domain of the problem the task becomes even
more difficult., It is therefore apparent that this phase of the work cannot
be expected to have been seen through to its completion in the short year that
it has been underway. However, important strides have been made toward that
completion. Section II[ of this report presents the formulation of the
unsteady, three-dimensional, two-phase reactivé flow model, while the

numerical scheme is discussed in Section IV. Results currently available are

presented in Section V.
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SECTION II
THE PSEUDQ TWO-DIMENSIONAL FORMULATION

1. INTRODUCTION

Impact forces imparted from hardened concrete targets to aerial bombs
can, in some cases, cauée outer case failure and breakup of the high explosive
filler. The detonation wave which may be expected to form if the bomb casing
were undamaged (total confinemeni of the explosive media)‘may be reduced or
even quenched completely in the presence of the :lamaged casing (partial
confinement). In this chapter the effect of partial confinement is
investigated by adding gquasi two-dimensional sink terms to the equations of
mass, momentum, and energy that describe the accelerating flame spreading
through a granular high explosive. These sink terms are formulated by
assuming that the gas escapes from the hole at the choked velocity for the
local pressure conditions at the hole location. It is clear from the results
presented that such partial confinement can indeed have a significant effect

on the formation of a detonation wave.

2. Assumptions
The important assumptions in formulating this psuedo one-dimensional
mode! are listed below.
a. The analysis considered here explicitly assumes that at time t = O,
the warhead has already impacted with the surface, and the explosive filler
has already fragmented, causing damage to the casing (see Figure 1). It is

also assumed that at t = { ignition of a small region of the explosive by the

fuse had already occurred.
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b. The deflagration and possible transition to detomation occurs only

in one direction (x-space).

¢. The surface-to-volume ratio of the fragmented particies is -
sufficiently high that they may be treated as uniform pseudo-spheres,

typically of the millimeter or sub-miiiimeter diameter,

d. The unsteady two-phase, separated fiow analysis previously developed

in Reference 8 represents the basis upon which this model was built.

e, The possibility of mass, momentum, and 2nergy loss is treated by

psuedo-s1de venting from cracks of prescribed width, length, and location.

@ f. The decision on whether the fragmented bed of explosive will
- detonate is based on the transient reacting flow events occurring in the first
10 to 20 cm of length. A run-up length of greater than 20 ¢m requires times
weil beyond established experimental DOT events.
g. The explosive particles, when ignited, burn at a rate r = ap"” where )
a and n are assumed to be known constants for typical high explosives used in

warheads. Ignition is assumed to have occurred when a prescribed critical

temperature is reached by the particles (see Reference 8).

h. The porosity (gas volume/total volume) of the fragmented bed is

assumed initially to be uniform, and typically in the range of 0.2 to 0.3.




i, The product gases obey a non-ideal equation of state (see Reference

7).

j. Heat transfer from the gas to the solid is by rapid convection only;

conduction and radiation are ignored.

k. The gas is assumed to be inviscid. The drag hetween the gas and
particle phase is included as a source/sink term in the momentum and energy
equatfons. (This is equivalent to assuming that the gas-gas momentum viscous
losses are orders of magnitude less than the gas-particle viscous

interaction.)

1. The equations are expressed as averaged-laminar flow properties in
that the turbulence due to the two-phase nature of the problem has been

averaged out.

3. THE FLUID MECHANICS MODEL

In the analysis of two-phase reactive flow, one must describe the
conservation of mass, momentum, and energy throughout the domain for both the
solid particle phase and the gaseous products phase. In separated flow
analysis, each phase is assuned to be a continuum, and the important
quantities of mass, momentum, and energy are therefore conserved separately in
each phase. The governing differential equations are presented below,

including the modifications made in this work to account for the 1§sses

occurring through the hole in the casing. For a detailed derivation of the

basic equations, the reider is referreq to Reference 7.
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N . 2
; and Ept = Cvap + 0.5 Up
The subscripts g and p denote the gas and particle phase respectively. The
i quantities py and oy in equations (1) - (6) refer to the bulk densities for
each phase and are defined as
g Py = 090
. pgy = Dp(l-ﬁ)
: The porosity ¢ is defined as the ratio of instantaneous gas volume to the
& mixture volume. Hence, the solids fraction is l-¢. The Bg and 8, terms in
= Equations (1) - (6) are the sink terms which account for the losses through
% the cracked casing. They are derived in detail in the next section.
N In addition to the six conservation equations, several constitutive
- relations are necessary for closure. The relations used in this work are
presented in detail in Appendix A, along with some discussion on their

validity under the extreme conditions imposed by this probliem. The necessary

equations are:

(A-1) An equation of state for the gaseous products phase, Pg = Pg(og. Eg).
(A-2) An equation of state for the solid particle phase, Pp = op(Pp).

(A-3) A relation for predicting the instantaneous porosity, 4.

(A-4) A relation for the interphase heat transfer, 6 .

(A-5) A gas particle interphase drag reilation, O.

(A-6) An equation determining the gas generation by the burning particles, r.

(A-7) An ignition criteria.
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- 4, DERIVATION OF THE MASS LOSS TERM

The condition of partial confinement requires that extra terms be added -~

R DMV . CARTIRALE AN

to the conservation equations in Reference 7. Figure 2 shows the fragmented
bed being modeled. The fourth volume cell from the left shows the crack in -
the casing, exposing the granulated propeliant inside. Superiposed on the
front face of the illustration are the pressure versus distance profiles
showing the expected pressure drop at the hole,

Consider now the single control volume with a hole in it shown in Figure
3. Pressure gradients aue to combustion are causing gas flow in the x-

direction, as well as causing some of the mass to flow out of the hole. The

L

TRy,

rate of mass flow of the gas out of the hole, per unit volume, is given by:

4 ,hg'

3 8 = g— (7)

. 9 Vv

] By = oA (8)

b_:.

:f where g = 93s density

a‘ U = velocity of gas leaving the control volume

F - L]
g Ay, = area of the hole

-

b Due to the high gas pressures present in the bed, we can assume that the

flow of the gas out of the hole into the atmosphere will always be choked.

Hence, U will always be the local speed of sound:

U= [(38) )%= ug (9)

10
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) ; A detailed derivation of the speed of sound equation for the non-ideal gas

_ used in this model can re found in Appendix B.
. : .. The area of the hole is defined as:
- |
A, = ax'axe

(10)

Note that ¢ is included in the definition of Ah since, in the separated flow
analysis, only the area of the hole occupied by the gas is considered.
The volume of the control cell is given by V.,

= ax3. Substituting back
into the expression for sg- one obtains

o -mn_oglst e ey axty (11)
g ch Ax3 AX  “AX
‘Dlus
By = TBx S (12)

where C0 is a prescribed constant which defines the width of the crack.

If one were to consider entrainment of some of the particles of unburned

solid propellant in the gas which is escaping out of the hole, the mass loss
for the solid phase may be written as:

. - DIU Ah
P ax’
paUs0,
3, = =22 €, (13)

where D, is a prescribed drag factor between the entrained particles and the
escaping gas, 0 < D, < L.




Pl
DN RS

;;' The momentum losses through the hole then become sgug and epUp for the
- gas and particle phase. respectively. Note that the velocity in the x-
direction is used in these terms rather than the sound speed. This is done
= because of the one-dimensional formulation of the equations of motion. The
quantity of interest is the amount of momentum in the x-direction which the -
ejected mass removes from the domain.
Likewise, the sink terms in the energy equations are BgEgt and BpEpt for
the gas and particle phase, respectively. Note that the work term found in
the flux terms of Equations (5) and (6) are not included in the mass loss term

o because there is no work done in the x-direction in removing the mass from the

domain.

5. NUMERICAL SOLUTION OF THE CONSERVATION EQUATIONS

The highly non-linear partial differential equations (1) - (6) do not
admit any analytical solutions. In order to obtain solutions, the time-
dependent equations were discretized over the domain and solved numerically
via the method of lines. In this approach, the }1ux terms on the right-hand
side of Equations (1) - (6) are evaluated as centered finite differences,
along with any source/sink terms. The remaining differential equations are
then treated as ordinary differential equations and solved via an 0.D.E.

solver. For example, Equation (1):

3, a(o, L)
— - -
Y —_Lax +T eg (148)

would be solved by first evaluating the terms on the right-hand side of the
equation at the current time level to get, say, G(t). This result is then put

back into Equation (1) to give:

12




a
it = G(t) (15)

at
This is an ordinary differential equation with o; as the dependent variable
. and t as the only independent variable. Now an 0.D.E. solver such as Runge-
Kutta may be employed to predict the new value of o1- In this work a variable
time step Runge-Kutta-Fehlberg fourth-fifth order algorithm was used. (For
more information on the method of lines, the reader is referred to Reference

12.)

6. COMPUTED RESULTS

The model described in the previous sections is first applied to a
baseline case, one in which there is no hole in the confining wall (total
confinement, G = 0.0). The results for this case are then compared with the
output for cases where holes of various length, width, and location have been
introduced into the wall. The important input parameters for these cases are
listed in Table 2. The output presented here is primarily in the form of
pressure profiles and plots of the locus of the flame front. These profiles
are presented in preference to others because pressure and flame front
velocity are the two most critical parameters in determining whether or not a
detonation will occur.

Figure 4 shows the pressure versus distance profiles for various times
for the baseline (no hole) case. The plot shows the shock building and
advancing through the bed as time progresses. At x = 9.0 cm the peak pressure
is almost 14.0 GPa, which is just a little less than the Chapman-Jouget (CJ)

detonation pressure for an explosive with this bulk density (see Reference 8).

13
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TABLE 2. INPUT PARAMETERS FOR 1-D MODEL

Bed Length, L 10 cm

Particle Radius, rpo 200 um

Porosity, °o 0.3

Pressure, P 1 x 10° GPa -
Gas Temperagure T 300 °K

Particle Temperatuge T 300 °K

Ignition Temperature, Th? gn 306 °K

Chemical Enerqgy of So11é chem 5.74 MJ/kg

Gas Constant, R' 296.8 J/kg °K

Prandtl Number of Gas, Pr 0.70

Constant Volume Specific Heat, C,
Interphase Viscosity, u

1500 J/kg °K
1.80 x 10-3 Ns/m?

Burning Rate Index, n 1.0
Coefficient in Burning Rate, a 0.001
Co-efficient in tquation of State, b; 4.0
Node Size, aAx 1 mm

Figure 5 shows the effect of having placed a hole 4 mm in length with an
opening ratio (C;) of 0.5 at a distance of 2.5 cm from the initiated end of
the bed. The location of the hole on the plot is evident from the severe
indentation in the pressure profile. It is interesting to compare the profile
at t = 68 usec for Figures 4 and 5. As one can see, the presence of the hole
has reduced the peak pressure by almost 6 GPa, while retarding the advance of
the flame front by 2 cm. Indeed, even at t = 72 usec, the peak pressure is
still about 3 GPa less than the baseline case at t = 68 ysec.

Figures 6 and 7 compare the effect of varying the width (Co) of the crack
while keeping the length constant at 4 mm. Figure 6 shows the pressure
profiles at x = 5.0 cm for various values of Co‘ [t is apparent that as Co
increases, the profiles converge. Fiqure 7 shows the effect of the various

Co's on the flame front velocity. As can be seen from the plots, the flame

14




front achieves a constant velocity near the end of the burn. This final
Chapman-Jouget velocity is one of the critical parameters in determining
detonation. As one can see from the plots, the final velocity decreases as CD
increases. We also see that the flame profiles again converge for large
values of C,.

Figures 8 and 9 show the effect of varying the length of the crack while
keeping Co constant at a value of 0.1. Figure 8 shows the pressure versus
distance profiles at t = 58 usec for cracks ranging from 4 mm to 16 mm in
length. As one can see, varying the length of the crack has a more severe
effect on the profile than varying C,. For the case where W = 0,16 (16 mm
crack), the peak pressure in the bed is a mere fraction of the value obtained
for the totally confined case. Moreover, Figure 9 shows that the final fiame
front velocity has been reduced from 5.2 mm/usec to only 2.7 mm/usec.

While results such as Figure 5 shows that partial confinement does indeed
have a significant effect on the forming detonation wave, one is still
concerned whether, after encountering a hole in the confining wall, the
reaction wave could possibly recover and still form a detonation wave if there
were a sufficient length of confined bed downstream of the hole. Therefore, a
condition was simylated for a bed of 20 cm length with no hole in the
casing. This result was then compared to another 20 cm long bed in which a
hole with W = 0.02 (2 mm in length) and a C; = 0.20 had been introduced into
the casing. Figure 10 shows the pressure versus distance profile for the
partially confined bed. Also shown is the maximum pressure achieved by the
totally confined bed. As one can see, even though the process in the
partiatiy confined case required 10 usecs longer, the peak pressure in the

damaged case has aimost compietely recovered the depressurization suffered due

15
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to the hole. Fiqure 11 further confirms this recovery by showing that the
final velocities of the two flame fronts are almost equal for the two cases.
This result was somewhat unexpected. It was at first believed that the
presence of such a hole would permanently quench a detonation. Of course, a
crack of much longer width would 1ikely prevent a detonation altogether.
Finally, a case was run in which the conditions for the crack formation
were changed. Instead of assuming that the crack already existed at
prescribed locations at t = 0, it was assumed that the impact with the
hardened surface had instead weaksned the casing so that if the pressure
inside the bed exceeded a prescribed critical pressure, the casing would

crack. The model was set up so that when the pressure at any point in the bed

exceeded 5 kbar (72,500 psia) a crack with Co = (.1 and W = 0.01 would form at
that location.

Figure 12 shows the pressure versus distance profile for this case. As
can clearly be seen the pressure in the damaged explosive never exceeds the
prescribed critical pressure. Therefore it would be impossible for a
detonation to occur if such physics as modeled were actually valid. Figure 13
shows the flame front locus for the totally confined case and for two cases
where the casing fails at a prescribed pressure -- one at P = 0.5 GPa and one
at P = 1,0 GPa. One can see the severe reduction in the final flame velocity

caused by the erupting cracks.

7. CONCLUSIONS AND REMARKS
The results presented in the previous section verify the fact that

incomplete confinement of the explosive media does have a strong affect on the

16 |
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formation of a steady-state detonation wave in & fragmanted explosive. The
presence of a hole can bring about a very significant reduction in the gas
pressure as well as cause a severe reduction in the reaction front velocity.
The results also showed that if a sufficient length of confined bed remained
downstream of the hole, a detonation wave could racover and still reach
steady-state detonation.

The procedure cutlined in this section, while providing results which are
heuristically reasonable, does make some major simplifying assumptions in
order to allow us to use the existing, proven one-dimensional flame spreading
model. Perhaps the greatest weakness of this mcdel is that it does not
simulate the actual two and/or three dimensional processes of the gas and
particles flowing out of the hole. Since the one-dimensional model allows
only flow in the direction of the deflagration front, it is impossible to
model the turning of the gas as it gains y and z velocity components.
furthermore, the one-dimensional model does not allow us to take the geometry
of the bomb or the cracks into account.

Therefore, we thought it necessary to formulate an unsteady flame
spreading model in three space dimensions to allow us to simulate this problem
with greater accuracy. In such a three-dimensional model, the hole in the
confining wall would simply become a boundary condition which allows the
normal velocity component at the wall to be nonzero. (Rather than the usual
boundary condition which states that the normal velocity component at the wall

must be zerc.)

17
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Bed Showing Recovery Downstream of Hole

_’ g 82-5T Pmax for Totally Confined
| § 20 cm Bed (at T=74}.LSGC)\l
L e Prax= 195 GPa ————ay |
) S t=84usec
;- dpo =040 / /ﬂ
3 5T L=20cm
Co =020
. W=002
3 12.5T n:=4AX
my/m, =021 / ///////
: ] /////44
i
- 7
27
0. U.HLHH\,H
0 5. 10. 15. 20
2.5 7.5 12.5 17.5

XLQCc { CM )

Figure 10. Pressure History for Extended Bed, Showing
Pressure Recovery Downstream of Hole
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SECTION III
THE THREE DIMENSIONAL MODEL

1. [INTRODUCTION

In References 1-8, the separated flow approach was used to derive the
conservation equations for an unsteady, two-phase reactive system in one space
dimension. In this section, the same type of analysis is followed to derive
the conservation equations for a three-dimensional domain in order to properly
model the dynamic flow processes in partially contained regions. Each phase
will be considered as a separate fluid flowing through its own control volume,
the sum of the two volumes being equal to the average mixture volume. The
conservation equations are then expressed in cylindrical coordinates with
interphase masg, momentum ard energy tiransfer terms being included in all
three independent directions.

Before work was started on this phase of the project, a thorough search
of the fluid-mechanics literature was made. While the search was quite
exhaustive, very little work on transient flows was found which could be of
help to the analysis of this problem. However, a paper by Markatos and
Kirkcaldy (Reference 13), was found in which a numerical model based on a
separated flow analysis was used to investigate the transient, three-
dimensional reactive flow through the totally confined granulated solid
propellant inside a gun cartridge. While this paper did not present
sufficient details, it did provide a useful example which allowed us to

compare the unsteady, three-dimensional conservation equations derived in this

work with those derived independentiy by other authors.
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N 2. ASSUMPTIONS

A1l of the assumptions stated in Section II, paragraph 2, also apply for
the three-dimensional case, with the obvious exceptions of assumptions (b) and .
(e), which refer to the one-dimensional nature of the equations. It will
still be assumed that the gas escaping from the domain through the crack in
the wall will leave at:the choked velocity. However, the pseudo one-
dimensional sink term (8) used to approximate the lost mass, momentum, and
energy will not apply here. Instead the choked assumption will comprise the
boundary condition at the location of the crack, and the amount of mass,
momentum, and energy lost will be found directly from the solution of the

conservation equations.

3. THE UNSTEADY, THREE-DIMENSIONAL CONSERVATION EQUATIONS

The unsteady conservation equations are presented below in their complete
form. A detailed derivation of these equations, based on the separated flow
concept is presented in Appendix C. The gas and particle phase momentum
equations in the ¥ , & and Z - direction are presented in generic form for
brevity, with Table 3 giving the specific terms for each phase and direction.

The conservation equations are:

Gas Phase Continuity

- 75 (buvg) - = (o,%g) + T (16)

Solid Phase Continuity
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28, 1 3 1 3 3

T 7 ar (Teadp) - F g (0aYp) - g (oaMy) - (17)
Gas Phase Momenta (3-equations)

2(p,9,) 1 3 1 3

TSt 7 T rar (Malgs) - gg (evge) - g (eiwge) + S,

Solid Phase Momenta (3-equations)

3(02¢2) 1 3

= 3 1
= - = - (Y‘pzupoz) T (pzvpgz) -

where ¢, stands for Ugs Vg» OF ¥gs respectively and 4,

W The terms be and S"2 resresent the gas and solid

p.
respectively.

Q>

— (Dzwp°z) + S‘b2

stands for u p* or

pr "
phase source terms,




' TABLE 3. SOURCE TERMS FOR MOMEMTUM EQUATIONS
’1 o1
f v 2 aP )
P
ML A
Ug = - 0r + rup (18)
plv 5] 1 Bpl .
Vg - - -FW—DB‘*‘FVD . (19)
aP,
Wg el ol Dz + rwp (29)
¢ sz
v ? aP
[
p 2 -
up = -t Dr rup (21)
p,v U 3P
_ pp_1 __2 -
- Yp - r 1 - (22)
:
L -5t DZ - rwp (23)

In Equations (18)-(20)

P = Pge )

- and in Equations (21)-(23)

S

Pp = Py (1-0)




Fr

Gas Phase Energy

a(o,E,.)
—tgt . _ 123 -
3t = 3r (rplugegt+ r@Ung)

1 3 3
T 50 (olnggt+ angg) - 57 (plnggt+ ¢wng)
- Drup -D evp - Uzwp -Q
+ (€9, +ulj2 +vij2 + w/2) (24)
chem p p p
Solid Phase Energy
3(o,E )
—2ptt 1 a3 - -
It 37 (rpzupEpt + r(l ¢)upPp)
1 3
¥ 78 (pzvapt + (1-¢)vap)
3
- 57 (oWpEper (1-0)wiPo) + Doy
+Dv_ + Dw +0Q+ (P ulf2 - vij2 - wl/2)
e'p zZp chem = "p’¢ ~ Vp/e = ¥,

(25)

In order to completely describe our system at every instant of time, we
need to know the instantaneous values of 0gs Pps ug, up. vg, vp, wg, wp, Tg,

T Pp, and & - - - thirteen variables. Equations (16)-(25) allow us to

pr Pgr
solve for ten of these variablies. We therefore need three additional

relations to achieve closure. These equations are:
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(i) an equation of state for the gas phase
g (i) an equation of state for the solid phase
‘ (ii1) a material stress-porosity relation

The same relations used in the analysis described in Section Il (and
further described in Appendix A) will be used here as well. Furthermore, the
same relations for the gas mass generation r and the heat transfer rate é, as
used in Section II will be used here. The definition of the drag viscous
interaction will be assumed to hold true in each direction independently,

i.e.,

I P
Dr=42(u u)fpg (26)
r
p
D Yq f 27
o * oz (g Yp) Fog (27)
p
e
ngdz(w-w)fpg (28)
r
p
_ 2 2 2 !5
D total® [ D r?t 0 g * 0 y4 ] (29)

In comparing Equations (16)-(25) to the one-dimensional conservation
equations (Equations (1)-(6) in Section II), one can see that the main

differences (other than the obvious additional terms that account for the
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multi-dimensional nature of the new equations) are the addition of the
—%Eé term in the r-direction momentum equations and the 31;313 term in the
o-direction momentum equations. These terms are the radial acceleration and
the Coriolis acceleration terms, respectively, and come from the fact that
%% + 0 and %g + 0 in a curvilinear coordinate system. [Here, ¥ is the unit
vector in the radial direction and & is the unit vector in the azimuthal
direction.]

Also on the inspection of Equations (18)-(23) we note that the pressure
gradient terms are now written as the gradient of partial pressure (i.e.
3§§$l ) rather than the gradient of pressure (i.e. ¢%§ ), as is sometimes
found in the literature (Reference 13). The specific form of this term has
been a subject of debate among fluid dynamicists working in multi-phase
flows. We feel that the correct form should be 3§§91 » Since the term
represents the pressure force acting on the control volume faces. Since we
are considering each phase separately, we should include only the pressure
acting on that area of the control volume face which is occupied by the gas
phase. Hence, the porosity ¢ (gas volume/total volume) must be included
inside the derivative. Naturally, the same reasoning holds true for the solid
phase. Therefore, the term (1-¢) must be included inside the derivative of

the solid phase pressure gradient term.

4, DOMAIN

The first approximation to the actual geometry of current warhead
containers would be to model the bomb as a right circular cylinder, as is
shown in Figure 14. The figure shows the assumed crack in the outer casin§ as

well as the fragmented explosive inside. To be able to model realistic crack
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configurations one would have to include the entire 360° cross section of the
cylinder in the domain of the model, However, one of the difficulties in
tackling this problem is the large amount of computer time and memory which
would be required to simulate such cracking. Therefore, in an effort to
reduce the size of the domain, it was decided to assume a certain amount of .
symmetry in setting up this problem. This can be donme by assuming that the
damage to the casing occurs in such a manner that holes form in a symmetric

ring around the casing, as is shown in Figure 15. This subdivides the domain

of the cylindrical bomb into symmetric wecdges, the flow in each wedge being
identical to the flow in all the other wedges. The flow inside the bomb may
then be completely described by solving the flow inside a single wedge.

Although such a domain limits the realism of this problem from a geometry

o
L
L
g
Ef

standpoint, this assumption still retains the necessary milti-dimensional
features of the transient fluid analysis. Also, it is not currently within
the scope of this work to analyze the dynamics of the casing fracture, but
rather to develop a model of the transient, two-phase reactive fluid mechanics
involved in the processes of detonation transition or failure. Clearly the
model developed herein, under this specific symmetry assumption, can be
extended by simply adjusting the boundary conditions in the & -direction to
include the full domain, once a super-computer with sufficient speed is

available.

5. BOUNDARY CONDITIONS \ND INITIAL CONDITIONS
Once the domain of the model has been fixed, boundary conditions must be
properly specified. The symmetric domain shown in Figure 15 has six

boundaries: solid walls at r =R, z =0, and z = L, and symmetry boundaries
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at r =20, 8 = 01 and & = 9,. Obviously, at each solid wall the normal
velocity component must be zero. In addition, symmetry allows us to say that
the radial velocity components ug and Up must be zero at r = 0, and all
derivatives with respect to r must also be zero here. Symmetry also implies
that Vg and Vp must be zero at e; and 9, and that all derivatives with respect
to 8 must be zero at these two boundaries,

As mentioned in the introduction to this chapter, the velocity at the
location of tne crack will be assumed to be choked. This assumption forms the
last boundary condition needed to solve the finite difference equations. How
these boundary conditions are incorporated into the finite difference model is
discussed in detail in Section IV, paragraph 4.

The bed of explesive particles is assumed to be initially quiescent and
at a prescribed nominal temperature and pressure. Combustion is initiated at
time t = O by assuming that a hot burning zone exists at one end of the
domain, with the temperature in this zone enough above the explosive ignitior

temperature to ignite the particles. The initial value input is given in

Section V.
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S-DIMENSIONAL
WEDGE MODEL

Figure 15. Schematic of Three-Dimensional Domain
with Symmetric Cracking




SECTION IV
THE FINITE DIFFERENCE EQUATIONS -

[MCREACAEREN

8 1. INTRODUCTION -
: The unsteady two-phase conservation equations presented in Section I[II
form a set of coupled, non-linear, hyperbalic partial differential

equations. As was the case in the pseudo two-dimensional formulation
presented in Section II, these equations also will not have analytical
solutions. Futhermore, a Method of Lines (MOL) approach such as the one used
in solving the one-dimensional equations would not be feasible for the three-
dimensional case due to the great increase in the size of the domain. The
high-order ODE solvers used in the Method of Lines require a large number of
calculations to be performed when solving the unsteady terms in the
conservation equations. Therefore, while such an approach may be feasible for
the domain of the one-dimensional case, it would prove to be cost prohibitive
for the much larger three-dimensiocnal domain., Instead, a new integration
method was developed as part of this research.

In this section, we will detail the development of a new numerical scheme
which will be used to integrate Equations (16)-(25). The discretization of )
the domain into a mesh of grid points is discussed in paragraph 2, while the
actual finite difference scheme is discussed in paragraph 3. Paragraph 4
details the finite differencing of the boundary conditions. Finally,

:i stability considerations for the finite difference scheme are discussed in

paragraph 5.
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2. THE FINITE DIFFERENCE GRID

In applying a finite difference method to the solution of any system of
equations, the continuous domain of the problem must be replaced by a mesh of
grid nodes, each node representing a location where the values of certain
dependent variables are stored. In this analysis, a staggered grid was used
to represent the domain. Figure 16 shows a sin§1e cylindrical, three-
dimensional control volume element employing the staggered grid. All scalar
variables are stored in the node at the center of the control volume, while
the bulk momentums in the ¥ -direction ( °1Ug and pzup) are stored at each of
the nodes in the ¥ -faces of the control volume, the bulk momentum in the & -
direction ( plvg and pzvp) are stored at each of the nodes in the § -faces,

and the bulk momentums in the Z -direction ( o,w_ and p,W,) are stored at

g
gach of the nodes in the Z -faces.

There are several reasons why it is advantageous to use the staggered
grid instead of the conventional grid. First, as will be shown in paragraph
4, it makes the finite differencing of the boundary conditions considerably
easier. It also enables one to get second-order accurate centered space
differences while having to span only half the distance required for taking
such a difference on a conventional grid. The advantage of this can be
illustrated by the following one-dimensional exampie. Consider the two grids

shown in the Figure 17. The upper grid is a conventional grid, while the

staggered grid is shown below that.

:
2
-




Now assume one wishes to evaluate the pressure gradient term in the

g
5 momentum equation. On the conventional grid, this term is evaluated by second
- order centered difference as:
aP
ax = (Pygp - Pyp)/aex
If we apply this equation at node i=2, we get for our example,
3P -
%" (100-100)/2ax = 0
;; This obviously cannot be true given the pressure field depicted in the figure.
- If we now evaluate this finite difference on the staggered qrid, we only
need to take the difference over a total step of Ax (rather than 2ax as
before), since values of Pg are available at nodes that are a distance of
ax/2 and - ax/2 from the velocity node (where the momentum equation will be
evaluated). Thus at i=2,
aP
9. -
ax (Pi+ L Pi- &)/Ax
b 3P
or Eﬂ = (100-50)/ax = 50/ax

As one can see, the scheme using the staggered grid yields a much more

accurate result for this typical example.
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Figure 18 shows the r, 9 -plane and r, z-plane projections of our wedge-
shaped domain with the staggered grid superimposed over it. The continuity
equation (Equations (16) and (17)), which are used to solve for o, and o, ,
and the energy equations (Equations (24) and (25)), which are used to solve
for Egt and Ept' will be solved at the scalar nodes (denoted by the symbol +
in Figure 18) since these are scalar quantities. The ¥ -momentum equations
(Equations (18) and (19)) will be solved at the ¥ -momentum nodes (denoted by
the symbol ), the 3 -momentum equations (Equations (20) and (21)) will be
solved at the 8§ -momentum nodes (denoted by the symbol ), and the Z -
momentum equations (Equations (22) and (23)) will be solved at the Z -momentum
nodes (denoted by the symbol ).

When employing the staggered grid, the situation may arise where the
value of a variable is needed at a location where it is not defined. In this
case a simple average will be taken to find the value at the desired point.
For example, suppose one needs to know the value of the velocity, u, at the
scalar node i=1 shown in the one-dimensional depiction (Figure 19).

Since the u values are not stored at i=1, we must average the values stored at

i= % and i=1 %, together, to form Gi=1' Thus
U, = (ui+ Vil V/2

Although the necessity for such averaging may complicate the numerical
scheme somewhat, it is actually advantageous as far as the accuracy of the
calculations is concerned. The averaged value is influenced by the value of
the variable at two nodes, while the variable which is read directly from a

location where its value is known is influenced only by a single value. In
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other words, the averaging operation passes information about gradients as
well as providing the value needed.

Finally, one will note that in our scheme, momentum rather than velocity .
is stored at the nodes locgted in the control volume faces. This was done

mainly to reduce the amount of computer storage required for the code.

3. THE FINITE DIFFERENCE EQUATIONS

Once the domain has been discretized, we must next cast the continuous
conservation equations (16)-(25) into finite difference form. We will
basically be using the leapfrog scheme Reference 14, which means that the
unsteady term will be evaluated at time levels t + At and t - At , while the
flux and source/sink terms on the right hand sides of equations (16)-(25) will
be evaluated at the current time, t.

The leapfrog scheme was chosen after we reviewed a paper by Williams
(Reference 15) in which he successfully used the leapfrog scheme to integrate
the unsteady three-dimensional conservation equations for an incompressible,
single-phase viscous fluid., The similarity between the equations integrated
in Williams paper and the equations handled in this work prompted us to

consider a leapfrog-type scheme. While the compressible, two-phase reactive

nature of the flow dealt with in this paper resuited in some major differences i
between the numerical scheme developed by Williams and the scheme developed %
herein, the usefulness of the work done in Reference 15 in aiding us in our
analysis is still acknowledged.

Consider the following shorthand notation (where x is a generalized

independent variable and q is a generalized dependent variable):




6,4 = [q (x+ax/2) - q (x-8x/2)}/sx (30)

T = [q (x+ax/2) + q (x-ax/2)]/2 (31)

Equation (30) is a difference operator while Equation (31) defines an

averaging operator. Furthermore, let us define

m. = e,Ug - gas bulk momentum in the F-direction
1

m. = 05Uy - particle bulk momentum in the r-direction
2

Mg 2 0qVg- 93S bulk momentum in the §-direction
1

1 S ozvp— particle bulk momentum in the 8-direction
m, = oW~ gas bulk momentum in the Z-direction
M, = oWy~ particle bulk momentum in the Z-direction

- We can then write Equations (16)-(25) based on our staggered grid in

finite difference form as:

Gas Continuity (applied at scalar nodes)

=t _ 1. 1 v oL oz
4Py = - °r(mr1r) - < Ge(mel' °z(mzl) + T (32)

a7




Particle Continuity (applied at scalar nodes)

- -t _ 1 1
. 840, = - 1 6r(mr2r) -

v 5e(mez) - sz(mzz) - T (33)

Gas ¥ -Direction Momentum (applied at ¥ -momentum nodes) -

P 1 =r 2 1 =0 —8\
Sy = - 6r{r(m:l) lo,] - 38, [(mrl(mel/p?)]

— T -
- &, [m2m, /5T) + (m )/(GTr)

-r
-r —r
- Gr(Pl) = D (mrl/pl = mrz/pz)

-r

—r
+ T mrz/p2 (34)

Particle ¥ -Direction Momentum (applied at ¥ -momentum nodes)

—t 1 - (2, 1 —
6tmr2= T r ér[r(m:z) lo,] - r 6elﬁiz(mezlpg)]

— r— r m——
-8, (m, /)] + (m )Y /GTr)

- —r -

- 6,(P,) * 0 (m, /3%-m, /57)

r -r
- T mr_zla2 (35)

Gas & -Direction Momentum (applied at § -momentum node)
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ot 1 == 1 —g 2
84y = - 7 Sr[rmel(mr1/°l) | - < 58[(m81) /o]

i
BT A

Yor,T
e %

¥ "

-2z —Z T
- sz[mel(mzl/o1 )] - ”el(mr1/°1r)

1 —8 ~8
-7 6(P) - D (g /27 - m, /5Y)

+ T° mez/;g (36)
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Particle & -Direction Momentum (applied at & -momentum nodes)

On

=

0
il

,
Solrg (/D)) - ¢ 8yl @) /o, ]

—_— -—-e o]
8 (WG (m, /oD)] - my (m_ /a7r)

1 -8 ~9 -9

7 8g(Py) + D (m91/°1 - mezloz)

- ?ﬁme /32 (37)
2

Gas Z -Direction Momentum (applied at Z -momentum nodes)

I T T T
6tmzl' T r 5r[mzl(mrl/"x) -7 se[mz‘(mal/°1) ]
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-z
—2 —2y . =2, /2
D (mz,/°1 - mzzl°2) +rm, fey (38)

Particle 7 -Direction Momentum (applied at Z -momentum nodes)

"R
I

N —
I —r —r 1. =0 -9
8¢Mz, * 7 ¥ Gr[rmzz(mr,‘,/"?) I -7 Ga[mzz(mezl"z) l

8L (05 ) /0,1 - 8,(P)

X ":"-"':"T""FW"‘""‘.V, MR

f . FAEARARND

e T B e
|

—2Z
-z -2y =z 2
D (l‘ﬂzl/a1 - mZZ/pz) -T mZZ/p2 (39)

Gas Enerqy (applied at scalar nodes)

s B =L (m [E7+ 7o) 1}

%Ge{mal[fl/ﬂx + (PI/plS ]}

)

1

i =r =9
Q - D mr.Z/pz - D mezlpz

4 g —r 2
0 mzz/‘32 + 1 [Egpen * (mr2/°2) /2

+

(my /0,) /2 + (m, [0,) /2] (40)
2 2




Particle Enerqy (applied at scalar nodes)

3 stff = - % cr{rmr2[€;73; " (P7e) "
F -%Ge{mezlEz/Dz e+ (leoz)el}

- 5Z{mZZ[E:7;§ + (P,70,) %]}

+

i —r -9
Q+0D m,.z/o2 +D m92/°2

+D ﬁiz/pz +T IEEhem - (5:2/92)2/2
- (my /o,) /2 - (0, [o,) /2] (a1)

In these equations,

2
0= 4ar - f
(ug/érp ) - fpg
4. THE BOUNDARY CONDITIONS
Once the domain has been discretized and an integration scheme has been
devised, we must next turn to implementing the boundary conditions. As
mentioned earlier, thera are six different boundaries where the equations must

be satisfied. We will consider each boundary separately.
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Here we have a solid wall, which means that the normal velocity .
components (ug and up) must be zero. Figure 18 shows that at this boundary,
we have only ¥ -momentum nodes. Since only the ¥ -momentum equations are .
evaluated at these nodes, this boundary condition can easily be met by
initializing the value of the r -momentum variables stored at these nodes to
zero and ordering the code to skip calculating the change in the v -momentum
(i.e. skip evaluating Equations (34) and (35)) when r = R. This will cause
the values of the ¥ -momentum to remain at zero, thus satisfying the boundary
condition,

One must also be able to evaluate fquations (32), (33) and (36)-(41) at
nodes which are not directly on the boundary, but are a distance of ar/2 in
from the wall at r = R, The evaluation of these equations at these particular
nodes is affected by the wall boundary in the evaluation of the F -direction
flux term (i.e. the first term on the right hand side in Equations (32)-

(41)).
The problem and its solution are perhaps best described by an example.

Consider attempting to evaluate the ¥ -Flux term in Equation (40) (i.e.

-

sr{mrlr[(E,/oxf + (Pllp,T]}) at the scalar node adjacent to the boundary at
r = R as shown in Figure 20. Evaluating the flux term as described by
Equation (30), we can see that we must find the values of E, /o, and P /p, at
i +3%and i - %. However, since E,, p,, and P, are all scalar quantities,
their values are not known at these points and must therefore be found by
interpolation as the averaging operators in the flux term indicate. This
creates an apparent problem when one tries to average the values at (i) and

(i+1) to get the value at (i+k), since (i+l) lies outside the domain.
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However, one will note that the quantity (E,/o, + P,/p,) is always
multiplied by the momentum in the ¥ -direction to find the flux, and since
the ¥ -momentum at the wall at r = R is always zero, these variables can have
any finite values at (i+l). Once the average has been taken and the result
multiplied by the ¥ -momentum at (i+k)(which is, of course, zero), the flux
through the wall in the ¥ -direction will have the correct value of zero.
This is why these nodes are refered to as false exterior nodes. They lie
outside the domain and are initialized to some arbitrary value, at which they
remain throughout tne run, They are used purely to fulfill the requirements

of the numerical method and the griding scheme.

(2) r=20

The symmetry boundary conditions requires that up and ug must be equal to
zero at r = 0 and that all derivatives with respect to r must be equal to
zero. Again, we can note from Figure 21 shown below that there are only ¥ -
momentum nodes at r = O, The first boundary condition is again met by
initializing the values of the gas and particle phase momenta at these nodes
to zero and instructing the code to skip solving the ¥ -momentum equations
whenever r = 0. Note that this procedure also avoids the singularity that
occurs in the 1/r terms as r-0 . Since we have only r -momentum nodes at r=0,
and since the code skips solving these equations at that point, the
singularity never arises.

The symmetry condition can be met by using reflection points about the 2z-
axis at r=0, and continuously updating the values of the variables stored at
these nodes to match the nodes directly across the z-axis. However, referring
to Figure 21, we can see that again the only interaction between the equations

evaluated at nodes which are a distance of ar/2 from the boundary at r=0 and
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I the symmetry boundary at r=0 is in the r -direction flux term, just as in
paragraph 1. Performing the same analysis which we performed in paragrdph
(1), we again see that the values of the variables at these symmetry nodes can .
i be completely arbitrary. Once the averaging is performed and the result is
multiplied by the ¥ -momentum (which is, of course, zero), the flux through
the boundary at r=0 will have its proper value of zero. [t is therefore not

strictly necessary that the values at the reflection points be continuously

L |

updated to enforce the symmetry condition, although it would be perfectly
proper to do so. Note that the only reason that this is possible is because
we are using a staggered grid and our equations have no space derivatives

higher than first order.

(3) z =0 (solid wall)

m:. ..

Here we again have a solid wall, leading to the boundary condition that
the velocity ccemponents Wg and 5 must be zero. This boundary condition is
i imposed in the same manner that the boundary conditions on the radial velocity
components ug and up were imposed in paragraph (1). Again false exterior
nodes are used to facilitate the numerical scheme at the nodes which are at a

distance of Az/2 from the boundary. Figure 22 shows the details.

() z =1L (far wall)

The same boundary conditicns that applied in (3) apply here

'

= (5) 8 =0, (wedge symﬁetry)

AL
()
e

.,

Here we again utilize symmetry with the boundary condition being that

tangential velocity components, vg and vp at these nodes are zero. This

condition is enforced in the same manner that the symmetry condition in



paragraph (2) is enforced. (See Figure 23 for details.)

(6) o =0, (wedge symmetry)
The same conditions that applied in paragraph (5) apply here,

Open vent (r = R)

Finally, we must consider the boundary conditions at r = R at the
location of the prescribed holes in the outer wall. Since the fluid and
particle momentum at the wall in this case will no longer be zero, the scheme
which was devised in paragraph (1) will not apply. Instead, we will have to
use one-sided interpolations to determine the necessary values at r = R.

As stated before, the gas will be assumed to be ledving the hole at the
choked gas velocity, which is a function of the local pressure and temperature
helow the hole. Choked flow means that the gas velocity is equal to the local
sound speed. The speed of sound in the non-ideal gas we are using here, as is

derived in Appendix B, is given by:

2
Cy (12byng) + R (13d,69) ]
) Pyl (8.9)
v’ g g

a= |

In addition to the speed of sound, it will be necessary to know the value
of several other variables of the fluid at the wall. These may be found via a
Taylor Series expansion about the node nearest the wall. Referring to Figure
24, the general dependant variable W defined at location (i) may be

approximated at (i+%) as:
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Since we are adjacent to the wall, the derivative %g cannot be

approximated as a centered second-order finite difference. Instead, we can

write this term as a one-sided second order finite difference:

MW 3“1' 4wi_l+ ”1-2 (43)
ar 47 2ar
Therefore, our approximation becomes
y i 7Ni— 4N1_1 + “1-2 aa
j+g T 7 (44)

If the hole is asgumed to be larger than one node in the *- or & -direction,
it is assumed that the velocity at the node at the center of the hole is
choked, and that the velocities at the remaining hole nodes constitute a
linear profile so that the u velocity is zero at the edge of the hole. (See
Figure 25)

The velocity of the particles leaving the domain through the hole is

evaluated by calculating the drag force on the particles at the hole location:

B(QZU ) F

at  ~ D (45)

where FD = Dr(Zxr
then

2 (p,u;) = Fydt (46)
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Integrating both sides, we get:

Vft+Atd(p2up) = rPOtE g¢ (47)

t-at t-at O

Since we assume in our discretization that 211 properties remain constant over

the time step at, FD: FD(t) . Then

ACTCIUR TN Al (48)
t-at P t-at
or
t+at t-at
(Dzup) = (Dzup) = FD"ZAt (49)

and finally,

(o,u D' 28t + (pzup) (50)

p
Once a value for the particle momentum at the hole is known, the rest of
the terms needed for evaluating the numerical scheme can be found via the one-

sided interpolation described above.

5. STABILITY
- The numerical solution of partial differential equations by finite
difference methods always presents a prohlem called stability. A finite

difference scheme, while providing an accurate representation of the original

analytic equation and boundary conditions, may still yield unsatisfactory |

results due to oscillations and explosive growth of the output caused by 1
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instabilities inherent to the differencing scheme being used. Most textbooks
on numerical methods treat this topic in great detail. In this section, we
will look at several sources of instability inherent to the scheme presented
in paragraph 3 and how they can be controlled.

In any explicit differencing scheme, there exists a bound on the maximum
size of the time step. OQur conservation equations can be shown to be
hyperbolic partial differential equations. If the size of the time step
exceeds this bound, oscillations will set in and the output will soon becoine
unstable. This Timiting value can be calculated via the Von Neumann approach
(see, for instance, Richtmeyer and Morton, Reference 16). However, for the
system of ten coupled, nonlinear equations with source terms which form our
finite difference scheme, the evaluation of the Von Neumann stability criteria
would in itself constitute a formidable task. It was therefore decided to
defer calculating the optimum time step and simply run the model with a
suitable constant time step, at , which must be determined by trial and
error. Once the suitability of the scheme has been proven, then a

concentrated effort can be made to determine the formula for the optimum

allowable time step.

A second source of instability is caused by the fact that centered time
differencing, rather than forward time differencing was used to represent the
unsteady terms in Equations (16)-(25). Centered time differencing was chosen
because Kurihara (Reference 14) has shown that it provides less damping of the )

kinetic energy than other methods of time differencing. The centered-time

difference scheme can be represented as:

(wt+1- Nt“l)/ZAt =F (r,e,z)t + S: (51)




where W is some generalized conserved quantity, F(r,0,2) represents the flux
terms and S¢ represents the source terms. Solving for Ht+1, we get

Ht+1

= 2at [F(r,e,z)t + Sot] + bl (52)

Since the first term on the right-hand side is added to the value of W at time
level t-1, there is a possibility that W at time level t+] may be less than
the value of W at time level t, even if 2at [F(r,e,2)% + Sat] is a positive
quantity. Once this occurs, the solution begins to oscillate until eventually
separate solutions form at odd and even time steps.

This oscillation is controlled by adding in a step which averages the
conserved variables over adjacent time steps, as was suggested by Williams
(Reference 15). Thus, one writes
WL Wt e wthye (53)

In this work, tﬁe variables were averaged at each adjacent time step to
control this oscillation. [t was therefore decided that a time step of 3/2 at
rather than 2at should be used, since this averaging process effectively
reduces the size of the time step. Thus, we assume

1

W (3/2) at-F(r,e,2)t + W (54)

To show the effect of this procedure it will be useful to consider one of
the computational results. Figure 26 shows a comparison of the flame front

locus versus time using time steps of 3/2at and 2at, respectively. This is
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compared with the flame front history from the one-dimensional model described
in Section Il. In all cases the walls are impermeable. The three-dimensional
calculation was in this case uniformally initiated to make the comparisons .
meaningful. As can be seen, the use of 3/2at as the time step yields results
which are much closar to the results from the previous one-dimensional model,

a result which is fairly accurate.

Another source of instability results from the nature of the equations
being differentiated. Equations (16)-(25) represent a set of nonlinear,
hyperbolic equations. The numerical integration of such equations can become
unstable due to explosive growth of the total energy of the system. This
instability is caused by aliasing, in which waves that are too short to be
resolved by the grid are misinterpreted as waves of longer wavelength. Figure
27 illustrates this phenomenon.

The solid line in Figure 27 denotes the actual waveform. However, since
this continuous wave has been discretized, the code senses only the amplitude
at each node. It therefore incorrectly interprets the wave as having a
waveform shown by the dashed line. Miyakoda (Reference 17) has shown that
high frequency waves produced by convective terms in the governing equations
can in this manner produce non-physical increases in the total energy of the
system. However, Arakawa (Reference 18) has shown that if the convective
terms in the total derivative form, as they are in Equations (32)-(4l),
aliasing will be controlied. The preceeding discussion on aliasing and its
control is condensed from the paper by Williams (Reference 15) and the reader
is referred there for further information on the subject. More on aliasing
can be found in the notes by Wilhelmson (Reference 19).

Another common source of instability in the finite differencing of

inviscid hyperbolic equations stems from the formation of shock waves in the
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computational domain. The presence of a shock can cause near infinite
gradients to occur at the front of the wave. These steep gradients quickly
cause the governing equations to become unstable.

This type of instability is caused by the fact that the second derivative
viscous terms, which are found in the complete Navier-Stokes equations, are
not included in the pseudo-inviscid equations used here. The viscous nature
of the real flow would tend to smear the shock discontinuity over a finite
(albeit small) distance, thus decreasing the severity of the gradient across
the front.

Control of this instability in an inviscid set of equations can be
achieved by adding viscous-like artificial diffusion terms to the right hand
side of Equations (32)-(41) which take the form of second derivatives. The
text by Ames (Reference 20) presents sufficient background. These terms act
to smooth out the sharp discontinuities which occur when a shock forms in the
domain. The artificial viscosity term used in this work is similar to that
used in Hyman's Predictor-Corrector Method described by Sod (Reference 21).
For the expiicit scheme used here, it was necessary to {ag the evaluation of
the artificial viscosity terms (i.e. evaluate them based on the values of the
variables at the previous time step) to ensure stability (Wilheimson, class
notes Reference 19). Since no jourmal articles were found which described the
application of artificial viscosity to three-dimensional problems, one-
dimensional strategies were used in applying these diffusicn terms to
Equations (32)-(41). One-dimensional artificial viscosity terms were added to
the equations where numerical experiments showed them to be necessary.

During the development of the computer code, it was found that the

solutions to the momentum equations quickly became unstable unless an

unacceptably small time step was used (typicaily 10-9 seconds). The root of




this instability was found to be in the interaction between the pressure
gradient and drag terms. As the pressure front moves through undisturbed
regions of the bed, the strong gradients across the front induce rapid
increases in the gas velocity. The difference between the gas and particle
velocities would then give rise to strong drag which acts to retard the motion -
of the gas. Realistically, the drag should continuously adjust itself as the
relative velocity between the phases changes. However, since we have
discretized this process, the model assumes that the drag remaining constant
over the entire time step. If the draq is large enough, this assumption gives
rise to the situation where the drag not only causes the flow to slow down,

but actually reverses its direction. This is physically impossible, since

once the relative velocity between the phases becomes zero, the drag would be
zero and there would be no force to retard the flow any further and cause it

to become negative.

Once the gas velocity becomes negative, the drag begins acting in the
same direction as the pressure gradient, causing the velocity to again
increase sharply, again becoming positive. This in turn again causes large
drag values which cause the gas velocity to become negative. This oscillation
between positive and negative velocities at adjacent time steps grows until
the scheme becomes completely unstable.

This problem was solved by using a predictor/corrector strategy when
evaluating the momentum equations (Equations (34)-(39)). For each direction
(radial, azimenthal, and axial), the solid and gas phase momentum equations
were solved exactly as shown in Equations (34)-(39), with all of the terms on
the right-hand sice being evaluated at the current time level, t. This
oredicted a temporary new value for the momenta at the next time level, t+l,

These temporary values were then averaged with the current values of the gas
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and solid phase momentum to give the average momentum over the time step,

at. Next the average phase velocities over the time step were found by
dividing out the appropriate phase density. Finally, the corrector step was
performed by re-evaluating the momentum equation for each phase, again
evaluating the right-hand side at the current time level (just as in the
predictor step) except for the drag, which was evaluated based on the average

phase velocities. The strategy in schematic form is, then:

(1) (wl)g‘:ﬁ."'k - Fl(r,e,z)E,j’k . szl . (“1)§:§,k (55)
()55 = Falrin)] g+ S+ (TS (56)
GRS U R R TR I V. (57)
CH A (R M (R M V. (58)
(3 (O] 5= @750 7 o0 (59)

-t W -t *
(VD7 gk = @Dy o (60)
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153,k V)

t+l - t 't ot
(W,) FZ(r'e’z)i,j,k+ S¢2+ o [(V)) ; i,j,k]

yd.k
(62)

Here wl and “2 represent plug and pzup, plvg and PpVps OF plwg and LY
respectively. Fl and F, represent the fiux terms on the right-hand sides of
- the appropriate gas and solid phase momentum equations, respectively, while
S‘»1 and S¢2 represent the gas and solid phase source terms. S'¢1 and S'¢2
represent all the gas and particlie phase source terms, except for the drag.
Finally, 0 = (ug/4r2p) fpq from the drag relation.
Figure 28 shows the improvement in stability caused by the use of the
:; predictor/corrector strategy on the gas phase Z -momentum equation. The
l momentum is plotted for a single node versus number of integrations. Note

that the kink at six integrations is caused by the particles at the adjacent

node igniting and not by instability.
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Figure 16. Single Three-Dimensional Yolume Cell
Utilizing the Staggered Grid
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Figure 27. Aliasing of a Wave Having a Wavelength Which Is
Too Short to Resolve on the Given Grid
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SECTION V
RESULTS

'
-

1. INTRODUCTION

The numerical scheme described in the previous chapter was incorporated
into a FORTRAN-V computer code. In this chapter some initial calculations are
presented which clearly show that unsteady muiti-dimensional flow can be
modeled by this code. While the output presented here is still of a
preliminary nature, it nonetheless shows the suitability and potential of our
model for predicting the rapid transients encountered in this type of work.

As was shown by the one-dimensional model in Section II, a totally
confined bed of small energetic particles exhibits rapid localized increases
in pressure, temperature, velocity, and density (see Figure 4). Pressure can
increase by five orders of magnitude in less than 0.1 milliseconds. One
should therefore expect difficulty in developing a three-dimensional depiction
capable of simulating such severe transients. Since the inclusion of muiti-
dimensional effect# and the partial confinement boundary condition greatly

complicates the problem, it was decided to defer the inclusion of the mass

loss through the container walls (the alternate boundary condition) until the
ability of the model to simulate the totally confined multi-dimensional flame
spreading was proven. Paragraph 2 discusses the input for the baseline case

in which a totally confined bed was initiated in such a manner that the flame
spreading would be two-dimensional, while Paragraph 3 presents the results for
this case. Paragraph 4 presents the currently available results for the more

complex partially confined case.
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2. BASELINE CASE DISCUSSION

A1l the test cases reported in this section modeled granular beds of
explosive with a fixed bed radius of 0.5 cm and lengths ranging from 3 cm to 6 |
¢m. Although these dimensions are obviously smaller than those of actual
explosive-containing warheads, they are sufficiently large for us to study the -
developing transients which appear during the early portion of the event.
Also, while the code is capable of modeling three-dimensional flame spreading,
only two-dimensional flame spreading results will be shown here for ease of
data presentation. (Contour plotting only allows three parameters, one
dependent and two independent variables, to be plotted.)

Initiation of the granulated explosives was achieved by assuming, as
before, that a prescribed high-temperature profile exists at one end of the
bed (see Figure 29 ).

The temperature at several prescribed points in the profile was assumed
to be above the bulk ignition temperature of the solid, thus 41lowing the
particles to ignite at time t = 0. 1In this manner the user can control the
initial spatial domain in which the flame spreading will take place. One-
dimensional flame spreading (no variation of the pirameters in the ¥ -
direction or § -direction) can be produced by assuming a profile one shown in
Figure 29, where the gas and particle temperatures vary only in the z-
direction. Two-dimensional flame spreading in the ¥ and 2 -directions can be
produced by assuming gas and particle initial temperature profiles which decay
to the ambient temperatures in both the ¥ and the Z -direction. Finally, full
three-dimensional flame spreading can be produced by assuming an initial

profile which varies in all (r-, 8-, and z-) directions.
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Input parameters for the two-dimensional baseline (no vent) case are

given in Table 4:

TABLE 4: [INPUT PARAMETERS

Bed Length, L

Bed Radius, R

Bed Angle, o
Particle Radius, rpo
Porosity, o

Particle Density, pp
Ambient Gas Temperature Tg
Ambient Particle Temperature, T

Po
Initial Gas Pressure, P

9%
Particle Ignition Energy, E

Srace Increment, Az

ign

Space Increment, ar

Angular Increment, aAe
Initial Gas Viscosity, ugo
Prandt1 Number, Pr

Gas Constant, R'

Specific Heats, ¢, & Cy
Particle Chemical Energy? £
Burning Rate Index, n
Burning Rate Coefficient, a
Gas Equation of State Constant, bl

chem

Number of Nodes
Number of Variables in Storage
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Jcm<z<6cm
0.5 cm
5

< 200 um
0.30
1.675 g/cm3

300 K

300 K

100 kPa

4.6206 x 107 ergs/g
1 mm

100 um < r‘po

1 mm

g °

1.8 x 1074 dyne-sec/cm2
0.7

296.79 ergs/K gmole
1.51 x 107 ergs/g K
5.74 x 1010 ergs/g
1.0

0.001

4.0

5x1x 60
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3. RESULTS FOR THE TWO-DIMENSIONAL SIMULATIONS

Figures 30-46 show the pressure, temperature, radial velocity and axial
velocity profiles for the gas a: various times. The explosive is 6 cm long,
composed of 200 um sized particles. The grid dimensions were 5 by 1 by 60
nodes, and the bed was initiated in such a manner that the flame spreading was
two-dimensional (in the ¥- and Z -direction).

Figures 30-33 show the rapid increase in the gas pressure at the
initiated end of the bed, as well as the forward motion (along the Z -axis) of
the pressure front as time increases, (Note that the scale on the pressure
axis changes on each figure.) Particularly interesting is the peak forming at
the head of the pressure wave at t = 46.3 usec. This is indicative of a shock
forming in the granular explosive bed.

Calculations were not possible after about 50 usec (350 integrations) due
to the rapidly developing shock described above. This was caused by the fact
that we are using a constant time step, rather than a time step which adjusts
itself to the rapidly changing bed conditions. As the shock forms, pressure
gradients across the front of the wave become very steep and much smaller time
steps are needed to allow the differencing scheme to adjust to these strong
gradients. The instability was caused, then, not by the finite differencing
scheme, but by the simplification of assuming a constant time step.

Most interesting of all is to observe that as time increases, gradients
in the radial direction vanish entirely and the flow, which was initially two-
dimensional, becomes totally one-dimensional (with gradients occurring only in
the axial direction). This is exactly what the experiments of Bernecker and
Price Reference 9 have shown to occur when totally confined explosives are
initiated in a multi-dimensional manner. Figures 38-43 show this phenomena
more clearly.
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- Figures 34-37 show the gas temperature profiles at various times during
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the burn. One can clearly see the gradients in the radial direction during
the early stages, as well as the disappearance of these gradients during the
latter stages.

Figures 38-43 show the decay of the radial gradients most dramatically,
since the disappearance of these g}adients forces the radial velocity to be
zero. In Fig. 38 we see a very prominent radial velocity profile at t = 13.3
usec. The radial velocity here is positive, meaning that the direction of the
flow is outward from the boundary at r = 0. Since there is an impermeable
wall at r = R, we know that the gas must eventually reflect off of this wall
and reverse its direction.

In Figure 39 we see that the location of the peak radial velocity has
moved downstream (in the z-direction) and the velocity behind the peak is
negative, as expected, due to the reflection of the flow in that region from
the wall. The reverse flow, though difficult to see in Figure 39 because of
the manner in which the figure is plotted, is more clearly evidenced by the
trough behind the velocity peak shown in Figure 40. In Figure 41 we again see
the reverse flow trough, noting that it has now moved farther downstream.
This means that a portion of the flow which was positive in Figure 40 (at t =
34.47 usecs) has reflected off the wall at r = R and is now heading back
toward the center of the bed by the time t = 39.96 usec. We can also observe
the slight peak at z = 1 cm where a trough had occurred in the previous
figure. This indicates that the reverse flow from Figure 40 has again
reflected, this time from the boundary at r = 0, and is now again heading in
the positive ¥ -direction. One shou]é also note the overall reduction in the

magnitude of the velocities, indicating that the flow is indeed damping out.
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(Note the change in scale on the radial velocity axis as compared to the
previous figures.) Figures 42 and 43 show this behavior continuing until, at
time t = 46.36 usec, there is practically no radial velocity in the bed. .
(Note again that the scale on the radial velocity axis changes in these
figures.) -

Figures 44-47 show the developing axial velocity profiles. Again we note
the initially two-dimensional profile decaying tc a one-dimensional profile.

In Figure 48 the location of the flame front is plotted in r, z-space at
various times during the event. We can note that initially the flame front
location varies in both the r and Z -directions. As time progresses, the
variation of the flame front location as one moves in the ¥ -direction becomes
less and less, until at time t = 47.7 usec no variation in the radial
direction is predicted. Clearly, the flame front has become one-dimensional.

These results illustrate two key facts. First, the fact that the
numerical scheme described in Section IV was able to handle the rapid flow
transients indicates its suitability for use in analyzing dynamic two-phase,
muliti-dimensional flows. Secondly, the results also show that the model
developed in Section III predicts behavior which is at least in qualitative
agreement with data from experiments involving accelerating reaction fronts in
granular beds of explosive solids.

One may ask at this point if a multi-dimensional flame spreading model is
only of limited use, since, in the presence of total confinement, the flame
spreading will eventually asymptote to a one-dimensional process. One must
realize that while the predictions presentad in Figures 30-46 show that multi-
dimensional effects last only 50 usec for our example baseline case, such an

amount of time represents a significant percentage of the total duration of
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typical DODT events, which may take only 100-200 usec. Hence, this transient
two-dimensional stage will indeed have a significant effect on a prediction of
the detonation run-up length.

Figures 49-51 show the gas pressure, axial velocity, and flame front
profiles in a bed which was initiated in a purely one-dimensional manner, and
compare tﬁem to the results from the same bed injtiated in a two-dimension;1
manner. In both of these case the initial particle size was fixed at a 100 um
radius. Figure 49 shows the gas pressure profile at t = 19.5 usec for the
case in which the initiation was one-dimensional compared with the two-
dimensional case at r = R/2, again at t = 19.5 usec. One can see the obvious
difference in the two profiles. Fiqures 50 and 51 provide similar comparisons
of the axial velocity and the flame front locus, respectively. Again, the
profiles are markedly different for the two different types of initiation.
Therefore, we can conclude that while the multi-dimensional effects eventually

decay they still have a significant effect on the results.

4, PARTIAL CONFINEMENT CASE

Once the capabilities of the code had been shown for the baseline (no
vent) case, calculation was made to test the model's ability to simulate flow
with partial confinement. Again a 3 cm long bed of particles with an initial
radius of 100 um was modeled. A crack 3 mm (3 nodes) in width was assumed to

exist around the entire circumference of the bomb. This latter condition was

: imposed to cause the flow inside the domain to effectively remain two-

g dimensional. The crack was located a distance of 1,=1.55 cm from the ’

E initiated end (2=0). A uniform profile was used to assure that the initial f

: flame spreading one-dimensional, in order to make the multi-dimensional
effects caused by the hole located at a fixed radius to be more apparent.
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Figure 52 shows ..e predicted gas pressure profile at t=21.48 usecs. One
can see that benind the hole the profile is indeed one-dimensional. The small
“indentation" in the profile at z=1.55 cm indicates the location of the
hole. The flow at this point is still largely one-dimensional because the
presslire fronf has only just reached the hole.

Figure 53 shows the gas pressure profile at a time 1.5 usecs later. By
ther the effect of the hole is very apparent. The pressure is severely
diminshed at the crack itself, while downstream of the hole (i.e., in the
positive 7 -direction) one can see strong gradients in the ¥ -direction,
indicatng that the flow is multi-dimensional. It is especially interesting
to note that downstream of the hole the pressure is higher at the wall than at
the centerline. This is caused by the fact that downstream of the hole, the
radial velocity at r=R (i.e. the solid wall) must again be equal to zero. The
radial velocity c¢omponents, induced by the gas flowing out of the hole, must
decelerate again to zero at the wall, thus increasing the pressure.

Figure 54 shows » plot of the radial velocity profile shortly after the
pressure wave has reached the hole. One can see that, due to the one-
dimensional initiation, the radial velocity is zero everywhere except at the
hole. In Figure 55, the pressure signals from the hole have propagated down
to r=0 and upstream of the hole, inducing radial velocity components in these
regions.

In Figure 56 one can see that the velocity profile is even more
prominent, with a dimpie in the profile upstream of the crack. This indicates
that the radial flow induced by the hole has reflected from the solid wall at

r=R and is flowing back toward the centerline.
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For this partially confined case, the calculations were continued until
tne flame rront reached the end of the bed at t=23.2 usec, at which paint the
calculations were automatically shut off. This is scmewhat significant in
that when the code was run for the identical input conditions, except with
total confinement, the formation of a shock wave prevented further
computiccions after a time of 19.0 usec. In other'words, the existence of the
hole sufficiently weakened the formation of a Z -direction shock so that the
scheme remained stable for the same spatial griding.

The results presented in this section clearly indicate that the model and
code developed in this study has the capabilities needed for calculating
partially confined, unsteady multi-dimensional flows. The potential for
carrying out calculations for (more realistically) larger domains, with
different vent openings and for explosives with different granulation is very

clear.

5. SUMMARY AND RECOMMENDATIONS

Two models were developed to predict the behavior of unsteady two-phase
reactive flows in a partially confined region. A pseudo two-dimensional model
was applied for a wide variety of cases and the results indicated that partial
confinement does have a significant quenching effect on a forming detonation
wave.

Since the pseudo two-dimensional formulation required many major
simplifying assumptions, it was decided that a three-dimensional unsteady
model should be developed to pravide a more realistic fluid mechanics

similation., The conservation equations were derived in cylindrical

coordinates and a new numerical scheme was devised to integrate these




equations. At the time of this publication, preliminary calculations of this
model indicates that it will provide stable, physically meaningful results
which are consistent with the very limited experimental evidence available.
Time constraints on the publication of this aralysis prevents a larger
number of calculations from being pefformed with this multi-dimensional model.
To conclude, the following proposed improvements are recommended for
future work.
(1) Derivation of an Optimal Time Step:

In order to be able to predict the formation of a steady-state
detonation wave within the fragmented explosive bed, stability of the
numerical differencing model must be maintained in spife of the
presence of & shock wave within the computational domain. To achieve
this, the time step must be sensitive to the instantaneous conditions
inside the bed. A Von Neumann-type stability analysis (Reference 16)
may be necessary to determine the formula for the optimum time step.
(2) Incoréoration of Improved Constitutive Relations:

As noted in Appendix A, the applicability of the data required
for the constitutive relations under the wide range of conditions
imposed by this problem is questionable. The incorporation of the
new gas equation of state being developed by Wang and Krier Reference
22 and the Mie-Grunniesen solid phase porosity-pressure relation
should help improve the accuracy of the model,

(3) Devisirg Alternate Forms of Initiation:
The use of a prescribed temperature to ignite the particles,

while proving satisfactory for initiating the bed, is not always

g4




realistic. Explosive warheads which are to be modeled are often
initiated by means of a shock from an exploding fuse. (learly, at
time t£=0, not only temperature but higt local pressure should be
modeled.

(4) Application of New Generation Computer Technology:

The CDC CYBER-175 computer currently in use at the University of
[11inois at Urbanma-Champaign was employed to run the code shown in
Appendix D. While this is one of the fastest and largest mainframe
cemputers on the market it is not totally adequate for all the
aspects of this type of work. Though we have been able to
demonstrate the capabilities of the code far predicting multi-
dimensional flame spreading in small domains using the CYBER-175, the
storage and processing requirements for applying this code to larger
domains {with full three-dimensional flame spreading) would
nece.sitate the yse of an even more powerful computer.

The code requires that the values of ten primary variables be
stored at two time levels, as well as the values of twelve secondary
variables at one time level, at each node. The core memory of the
CYBER-175 allows the user 131,000 words of storage. Leaving enough
memory for the code itself, this restrict~ the maximum computational
domzin to 3500 nodes. Given the size Of the space increments needed
to assure proper resolution (approximately 1 x 10‘3m), this limits us
to calculating cases representing relatively small domains. Of
course, infinite storage is available by using off-line memory, but

only at an increased cost to the user.
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This problem may be solved by the utilization of the new
generaticn super-computsrs, such as the CRAY-1. The increase in core
memory (1-4 million words for the CRAY-1) offered by such a computer -
would allow us to pertform calculations for much larger domains.

Furthermore, the increased computational speed of these computers N

will help keep the computational costs to a minimum.
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Figure 30. Gas Pressure Profile at t = 13.28 usec
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Figure 31. Gas Pressure Profile at t = 34.47 usec
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GAS TEMPERATURE  (K)

.
—
—
s
™,
.
—
S
ey
-~ —
~
e -
-~ —
—_ -,
—— —,
p—y =,
— - -
- e N
—,
~ —,
e —,
-~ e p—
r—,
i,
- —h,
e i, o,
- —
~ >
o " i
~— e — —~
. N - N
~— e iy S
— —— .
O

< ~ ~ ~
0.05 035 025 Q35 045
R AXIS (cm)

Figure 34. Gas Temperature Profile at t = 13.28 ysec
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Figure 36. Gas Temperature Profile at t = 39.96 usec
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Figure 44. Gas Axial Velocity Profile at t = 13.28 usec
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APPENDIX A
CONSTITUTIVE RELATIONS

To totally describe the process occurring in the combusting explosive

media, we must be able to find the instantaneous values of Pgs Pps U T

g! upl gi
T Pg, P_ and 3. The six conservation equations allow us to solve for six of
these variables. In addition to these equations, three constitutive relations

are needed for closure:

(i) An Equation of State for the Gaseous Products Phase:
In this work we utilized a non-ideal equation of state for hard spheres
suggested by S. J. Jacobs (Reference [23]). This equation of state was

written as:

Pg = ogR'Tg (1+ b1°g) (A-1)
Ideaily, the coeficient b should be a function of the density. However, in
this anaiysis, by was considered a constant.

While offering good correlation with experimental values at relatively
low pressures, there is some question about the accuracy of this equation of
state at the extremely high pressures (10-20 GPa) which can be achieved in a
bed of combusting particles. Work is currently being performed by Krier and
Wang (Reference [22]) to develop an equation of state which is valid at these

extreme pressures.

(i1) An Equation of State for the Solid Particle Phase:




LA ga
et

Here, the Tait equation of state was used to predict the density of the

solid particles:
o = (2 + 1)13 (A-2)

(ii1) A Relation for Predicting the Porosity, o:

Since no relationship for the porosity of a packed bed of particles which
is reliable under the range of conditions imposed by this problem is known,
this condition was replaced by an equilibrium condition which states that at
each instant of time, the particle pressure is equal to the gas pressure. The
porosity is then predicted for eich new time step by taking the value of CPY
predicted by Equation (2) and dividing it by the solid phase density from the
previous time step. While this procedure does introduce some error into the
prediction of ¢, this error will be quite small since the time steps used in
this model are quite small and the density of the solid phase will not change

much between adjacent time steps.

In addition to these eguations, relations are needed to solve for the

heat transfer, drag, and burning rate.

(iv) A Relation for the Interphase Heat Transfer Term, Q :
The relations used to find the heat transfer between the hot gases and the

particles were:

_ 3(1-4)
Q=h (T - T) 7 (A-3)
k 0.7 5.0.33
hog = Fﬂ (1+0.2Re """ Pro-77) (A-4)
p




where the gas thermal conductivity is defined as:

k (R'+ Cv )/Pr (A-5)

=y
g g g

and the interphase viscosity is given by:

0,865
= T /7 . A-6
g “go( o 90) (A-6)
The Reynolds Number used in this work is given by Wallis [24] for two-phase

flow as:

Re_ =2r u -u A-7a
r poul Uy = U /ug (A-7a)
For the three dimensional model described in Section II, a variation of this
form of the Reynolds Number was used:

2 2,0,5 2 2 2,0,5

I [ R A e R T

(A-7b}

(v) A Relation for the Gas-Particle Drag, D:

The relation used for the interphase drag in this work are given as:

2
0 = ugllug - u)/lar, |- Fog (A-8)

Fo= (52 7 (276 + 5[e) *+°) (A-9)




This relation was derived experimentally by Kuo and Nydegger (Reference [25])
for steady flow in a packed bed of spheres at constant porosity for Reynold's
number ranging from 460 to 14,600. The problem being considered here is

unsteady and has Reynold's numbers which greatly exceed this range. However,
at the present time there does not appear to be any relationship in use which

is any more reliable.
(vi) A Relation for the Gas Production Rate, r:

=2 (1-e) ot (A-10)

o

where ™ is the instantaneous particle radius and r is the surface burning

rate given by:

Fea pg" (A-11)

While some of the relations used in this work were applied under
conditions which lay outside their stated domain, this should not detract
anything from the reliability of the results obtained herein. Rather, the
development of constitutive relations which are tailored to the extreme range

of conditions encountered in this type of work will merely help to fine tune

the previous results.




APPENDIX B
THE SPEED OF SOUND IN A NGON-IDEAL GAS

In Section ] we formulated a partial confinement model which assumed
that the gas escaped from each damaged control volume at the choked
velocity. We must theﬁ determine the speed of sound in the non-ideal gas
which is produced in the burning particles. Recall that our non-ideal

equation of state had the form:
P = oR'T(1 + b,e) (B-1)
Recall also that Lhe First Law gives us:

de

8Q - pdv (8-2)
If we use

de = C.dT (B-3)*
and the Second Law

ds = %9 (B-4)

we can re-write (B.2) as
i
4

C 4T = Tds - pdv (8-5)




Combining the above equations yields the resuit
- dl R 2y do
ds = CV*T s (o +b0) =

Equation (B-6) can be rearranged as

P

T = —t——r
R'(p + blp )

After some mathematical manipulation, we can show that

o

dT d (1 + 2b,0) do
‘-.I..

T TPTT{T+b,e) o

Substituting this into (B.6), we get

2
C.(1+2b o) + R'(1+b p)
_ -d_P_ v L 1
ds = 075 - T+D,7) do/o

Recalling that the speed of sound is given by

2 . (2R
a = (35)s

Equation (B-8) gives us that

C,(1+2b,0) + R (1+b,5)’
a = SQRT [ Cv°(1+b1°)

(B-6) -

(B-7)

(8-8)

(8-9)

*That Equation (B-3) holds true for the non-ideal equation of state used here

can easily be shown by writing the internal energy as




and applying the First and Second Laws of Thermodynamics and using Maxwell's

relations.




APPENDIX C
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DERIVATION OF THE CONSERVATION EQUATIONS

A
[

In Section III, the ten conservation equations for the unsteady, three

dimensional separated flow model were presented in their finished form. In

this appendix, the key steps in deriving these equations will be presented.

Gas Phase Continuity

Consider a three dimensional cylindrical control volume element with

sides of finite length dr, da, and dz. Mass is flowing through the volume in
the ¥, 8§, and Z directions. Performing a mass balance on this control volume:

Mass increase in C.V. net mass mass generated

5 in time t = flux through + in C.V. in time t
- C.V. in time t
-~
) e,V )
99 _ ey L e e S
at (m)r (m)r+dr + (m)e (m)e+da+ (m)z (m)z+dz+ I1ch
(C-1)
- Here, Vg = volume of gas phase and VT = total volume of control cell. Using a
A Taylor Series to expand the flux terms about r+dr, o+de, and z+dz, we get i
a(p V) am 2’ -
P
39 - n-(m+ =T L
v m {mr+ = dr + s dr + }
ar
am am
. . 6 9
+m-[ma+73-de+a—i—d9 +----}
0
am azm
. : b4 2
+ M- {mz + o7 dz+ =dz + - - - -}
3z
+ rVT
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or

ale V) am am
r r 2
-—%Eﬂ— = - f{mpdr+ s dr + - - - - |
ar
am 3°m
8" 2
- ® do + da” + - - - -}
a8 29"
am 3
r 2 Z 2
- { dz + dz" + - - - -}
az 322
+ IV (C-2)

For a cylindrical control volume V_=rdrdedz¢. Since the volume of the control

g
cell is invariant with time, it may be pulled out of the time derivative on

the left hand side. Dividing by Vg, we get

. 2.

a(o9) am am
g’ _ 1 r
3t " " vdedz (ar t oz drt - - - (1)
ar
am a’m
1 8 8
" rdrdz {ae * 7 o+ - ---} (2)
a0
am )
- rdide {azz + § dz + }+r (C-3)
az

Now consider the first group of terms (1) on the right-hand side (R.H.S.) of
Equation (C-3):

1 am am

" rdedz




r T Pefrig

p -7
I

rdedze

Therefore, we get:

2

(ogrdedz¢ug) + —3? (ogrdadz¢ug) dr + - - - -}

ar

. =2
rdedz ‘ar

Since do and dz are not functions of r, they may be pulled out of the

derivative. Therefore, we get:

2

1,3 3
- = {3F (olrug) + ;;3 (pxrug) dr + - - - -}

By defining

Ill6 = pgAevg

Ae = drdz¢
and

mz = pgAZHg

Az = rdrdse¢

and performing the same analysis on groups (2) and (3), we finally get:

(o)) .
-3 (T‘plug) dr + - - - -} (1)
ar

. _ 1,2
®C 7 br (ro,ug) +




2

- F lg (ogvg) + 3 orvg) ds v - - - o} (2)
] 32
= {E (Dlwg) + ;;’f (°1Vg) dz + - - -~ _} (3)
+ T (C-4)

If we now take lim dr -~ O, all of the higher order terms in group (1) approach
zero. Similarly, if we take lim de - 0 and lim 4z - 0, all the higher order
terms in groups (2} and (3) go to zero. Finally then, we are left with:

apl 1 2

N | 3
—a—t— = - F ar (rolug} - F;é' (Dlvg) - E (plwg) +T (C“S)

Gas Phase Momentum Equations

Since velocity is a vector function, the momentum equations must be
derived in vector form. Consider again a cylindrical control volume.

Performing a momentum balance on this control cell:

Momentum increase net momentum net pressure interphase
in C.V. in time t = flux through + stress on C.V. + drag and
C.V. in time t faces momentum generated

by combusting particles

3% (pgvgv) = (ﬁ'rv)r— (ﬁ'rv)r+dr+ (mev)e' (ﬁlev)e"’de

(ﬁzv)z' (ﬁzv)z+dz+ (PgAr)r' (pgAr)r+dr




* (pgAe)e' (pgAe)9+de+ (PgAz)z' (PgAz)z+dz
-D Vg +r0 vV Vs (C-6)

where

Again performing a Taylor Series Expansion as before, we get:.

2
7t (ogVg?) = - 57 (@.9) dr + ﬁ; (m 9) dr’ + - -} (a)

2

. . 2
- {2 (,9) rde + (r:ﬂz (m ¥} (rde) "+ - - } (5)

2
(2 (7, 0)dz + % (m,9) dz°+ - - } (6)
z .

2
(z2 (PR) dr + ;"’_7 (PR) dr's - - | (7)

2
{35 (PR) rde + -(;i—)-z- (PR)  (rde) ™+ - - } (8)

(32 (PR),dz + ;% (PR),dz°+ - - } (9)

]

-DV vy c-7
g+rg ( )

Let us consider each term separately.




..........

Term 4:
a(m_V)
r __-3 - - - -
— =3 [mr(ugr tvgh + wgz)]
-_a . - . . - _
~ = [mrugr + mrvg§ + mrwgz] (C-8)

Note that ar_38 .32 _¢, Therefore,

Now,

m_ = o u_rdedz
r 7 Pglgt e

Therefore,

< (er) = dedz -2 (olrugz) P+ dedz - (0,uq¥gr) 8
+ dedz 3% (plugwgr) Z (C-9)
or, 5% (mrQ) = dedz [3% (plugzr) F+ 3% (plugvgr) [
+ 3% (plugwgr) 2] (4% (€-10)

Note: the higher order terms will not be expanded, since they will disappear

as before. Going on to term 5, we proceed in a 1ike manner, recalling,

- »
ar _ 3z 39 _ x 3z
however, that <o g, v *. 33 = 0 . Therefore,
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L &

e e

a(rhev) 3 . - . - -
= T +
728 = Tag (Mgl * MgVgé + MW 2]
m.u
2 = 8 q 3 -
" rae(meug) r r &+ Tae (mevg) §
ﬁev . y . .
S Pt g (geg) 2 (C-11)

Defining

m9 = oldeZVg

We finally get

2

V) = Laraz [ (01U vgl - [orvg D F 4 (5%)

8 v
rag g
3 2 a +
30 [oavg |+ (ogvgh) 8+ 55 (ouvgug) 2 1
(C-12)

Similarly, recalling that

we expand term 6 to get
aﬁzv ,
—i = -2 4 2 a *
==- = rdrde [5; (0,ugwg) ¥+ 57 (0,vgug) (6*)

..................................................

.......
- - -
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Next we consider term 7 the pressure stress in the r -direction:

“$+

rdadz¢

> ¢
-5
1}

Therefora,

H

3 o 2 . 3 >
3;»(PgAr)dr I (rdedng¢) r = drdesdz 5 (Pr)r
There is another component of the pressure stress in the ¥ -direction
which is due to the curvilinear nature of our coordinate system. Consider the
r,8 projection of our control volume shown in Figure 57. As can be seen from
the drawing, there is a component of the pressure force in the § -face which

acts in the ¥ -direction. The magnitude of this force is:

p
3 _d_B, = ie_ = -9- -
Pghe 10 () = PA () = = drdadze (C-14)

Since an equal force is acting on the opposite § -face, the total force is:

3

7= —Pgdrdedza? = -P drdedz¥ (C-15)

Therefore, term 7 becomes:

>

3 = 2 -
T (Pgﬁr)r = drdedz (ar (Pr)y -pP)r

3P

1 +
= drdedz (P, + r Frall P




--------------------------------------

y P (PgKr)r = rdrdedz [EF PO (% (C-16)
Proceeding to term 8

3 =
55 (Pgy)erde =

= [Pgdrdz¢] rde 8 g

2

rae
= rdrdedz [3% (P)]§ (c-17)

Again there is component of the stress on the ¥ -face in the 3 direction:

d

. ,de . 8 = F + .
- Pg51n G A s gr * P931n () A.=F as (C-18)
ds
F 53 ® Pg—f dedze (r - (r+dr))
2
F Fad 3 - %Pg drde dzé¢
Therefore, term 8 becomes:
2 (P A) rde = a2 1
“ = (PgAg)erde = drdzde [aa (P) -3 P, de] § (8%) (C-19) '
Similarly, term 9 becomes: .
3 = ] * -
= (Pgﬁz)Z dz = rdrdedz — (P) (9% (C-20)

Now, we p1u§ these starred terms back into Equation C.4 and divide out the

volume of the control cell and take the 1imits as dr, da8, and dz - O. After

re-arranging the terms, we finally get:




Gas Phase r Direction Momentum

3 . 1 3 2 1 3 2
3T (olug) = -3 (olug - v % (OIUgV ) - 33 (olugwg)
2
o,V 3
+ ——;9— -5r () - D+ ru (C-21)

Gas Phase & -Direction Momentum

2 (0,vy) = - 222 (o,ugver) - =22 (o,vy ) - 22 (0,V W)
at ‘1 r ar \"it%gg r 3e \Mi'g 2z \P1'g%g
p, V. W
_tgg 1. . -
- - 30 (P)) De + rvp (C-22)

Gas Phase Z -Direction Momentum

3 =13 1 2
7t (oMg) = - T ¢ (o,ug¥er) - 7 35 (0,vg¥y)
3 2 3
- 53 (plwg ) -5 (P) -0, + I, (C-23)

Gas Phase Energy Equation

Once again we perform an energy balance on our control volume:

increase in energy
in control volume

over time t

net energy flux through




™ control volume + work done
in moving gas through C.V.
o+
7
< heat transfer, drag work,
chemical energy, and kinetic

energy of the combusted particles

3o E . V) P P
t - . L]
___33%__3_ B [mr(Egt+ Ei)]r' [mr(Egt+ Ei Mergr
.:: - P . P
. * [me(EgT* Eg)le ) [me(EgT+ E§)10+de

P P
. o] . -H
* [mz(EgT+ E;)]z' [mz(EgT+ pg)}z+dz

- QVT - DrupVT - DavpVT- Dz'va

2 2 2
v w
g 2+ B L. B -
MR- R i e R (C-24)
Proceeding in an identical manner as brfore, we finally get:
__a.( E ):_.1._3[ ur(E +.P_S.)]_.l_a[ v(E +ig.)l '
at ‘Pitgt r ar P1¥g gt °q r 28 P1'g\ gt °g
- 3 fﬂ ; )
o - 7 (91"9 (Egt+ pg)] - Q- Du- Ogvy
- 2 2 2
: S T T
y -0yt Ecpemn * 5 * 7+ 3 (€-25)
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Figure 57. Control Volume Showing Component e-Stress
Acting in the r-Direction
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